首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23篇
  免费   0篇
  国内免费   2篇
环保管理   2篇
综合类   2篇
基础理论   2篇
污染及防治   19篇
  2023年   1篇
  2021年   1篇
  2018年   1篇
  2017年   1篇
  2014年   1篇
  2013年   2篇
  2012年   1篇
  2010年   1篇
  2009年   6篇
  2007年   3篇
  2006年   1篇
  2003年   1篇
  2002年   2篇
  2001年   2篇
  1999年   1篇
排序方式: 共有25条查询结果,搜索用时 478 毫秒
1.
为探讨纳米Fe0粒子对产乙烯脱卤菌群脱氯性能和物种多样性的影响,采用纳米Fe0粒子与产乙烯脱卤菌群联合脱氯,并通过气相色谱、PCR-DGGE和TEM等技术手段进行相关表征.结果表明:当纳米Fe0粒子浓度为0~0.50 g·L-1时,体系的脱氯速率提高较小,低于40%,且菌种数量无明显变化;当其浓度为0.50~1.00 g·L-1时,体系的脱氯速率由0.31μmol·h-1提高到0.77μmol·h-1,体系的脱氯速率提高了60%,部分DGGE条带消失,多样性减少.TEM结果显示,产乙烯脱卤拟球菌在与纳米Fe0粒子接触部位有轻度破损,但细胞没有破裂.纳米Fe0粒子浓度较高时对产乙烯脱卤菌群的脱氯有明显的促进作用,但会使产乙烯脱卤菌群物种多样性减少.  相似文献   
2.
The development of state implementation plans (SIPs) for attainment of criteria pollutant standards is an integral component of air quality management in the United States. However, the content and efficacy of SIPs have rarely been examined systematically. Here, 20 SIPs developed in response to the 1997 8-hr ozone standard are reviewed as case studies of attainment efforts at the state level. Comparison of observed and model predicted ozone concentrations shows the US Environmental Protection Agency (EPA) recommended modeled attainment test to be a somewhat conservative predictor of attainment. Among 12 SIPs for regions that sought attainment by 2009, the test correctly predicted attainment and nonattainment in four and five regions, respectively; in the other three regions, attainment was observed despite predictions of nonattainment. However weight-of-evidence determinations and deviations from the recommended modeled attainment test methodology led five of these SIPs to predict attainment that was not in fact observed by 2009; three of those regions achieved attainment in 2010. Ozone and NO2 concentrations declined across much of the United States during the period covered by the SIPs, with rates of improvement strongly correlated with the initial pollution levels and hence greatest in nonattainment regions. However at monitors with mid-range levels of ozone initially, rates of reduction were largely independent of the initial attainment status of the region. This is consistent with thefact that apart from California, the majority of ozone precursor reductions documented by SIPs resulted from federal measures rather than from state or local controls specific to the nonattainment regions.  相似文献   
3.
To convert gaseous carbonyls to oximes during sampling, an XAD-4 resin denuder system pre-coated with O-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine and followed by analysis with methane positive chemical ionization gas chromatography/mass spectrometry was used to measure carbonyls in ambient air samples in Riverside, CA. In conjunction with similar analyses of environmental chamber OH radical-initiated reactions of o- and p-xylene, 1,2,4-trimethylbenzene, ethylbenzene, 4-hydroxy-2-butanone and 1,4-butanediol, we identified benzaldehyde, o-, m- and p-tolualdehyde and acetophenone and the dicarbonyls glyoxal, methylglyoxal, biacetyl, ethylglyoxal, 1,4-butenedial, 3-hexene-2,5-dione, 3-oxo-butanal, 1,4-butanedial and malonaldehyde in the ambient air samples. As discussed, these carbonyls and dicarbonyls can be formed from the OH radical-initiated reactions of aromatic hydrocarbons and other volatile organic compounds emitted into the atmosphere, and we conclude that in situ atmospheric formation is a major source of these carbonyls in our Riverside, CA, ambient air samples.  相似文献   
4.
Through the combined application of a speciated VOC emission inventory and an explicit chemical mechanism, a picture has been put together of the different contributions to photochemical ozone formation from 248 VOC emission source categories. The study has shown that the different VOC emission source categories show vastly different propensities for forming photochemical ozone as indexed by their photochemical ozone creation potentials (POCPs). POCPs range from close to zero for numerous processes, including halocarbon solvent usage, through to over 70 for diesel combustion and some reactive solvent and other product usage applications. The consequences of the large range in POCPs are highlighted for cost-effective VOC emission control strategies across north west Europe.  相似文献   
5.
6.
Three different methods are used to predict secondary organic aerosol (SOA) concentrations in the San Joaquin Valley of California during the winter of 1995–1996 [Integrated Monitoring Study, (IMS95)]. The first of these methods estimates SOA by using elemental carbon as a tracer of primary organic carbon. The second method relies on a Lagrangian trajectory model that simulates the formation, transport, and deposition of secondary organic aerosol. The model includes a recently developed gas–particle partitioning mechanism. Results from both methods are in good agreement with the chemical speciation of organic aerosol during IMS95 and suggest that most of the OC measured during IMS95 is of primary origin. Under suitable conditions (clear skies, low winds, low mixing heights) as much as 15–20 μg C m−3 of SOA can be produced, mainly due to oxidation of aromatics. The low mixing heights observed during the winter in the area allow accumulation of SOA precursors and the acceleration of SOA formation. Clouds and fog slow down the production of secondary compounds, reducing their concentrations by a factor of two or three from the above maximum levels. In addition, it appears that there is significant diurnal variation of SOA concentration. A strong dependence of SOA concentrations on temperature is observed, along with the existence of an optimal temperature for SOA formation.  相似文献   
7.
Particle size distribution is important for understanding the sources and effects of atmospheric aerosols. In this paper we present particle number size distributions (10 nm–10 μm) measured at a suburban site in the fast developing Yangtze River Delta (YRD) region (near Shanghai) in summer 2005. The average number concentrations of ultrafine (10–100 nm) particles were 2–3 times higher than those reported in the urban areas of North America and Europe. The number fraction of the ultrafine particles to total particle count was also 20–30% higher. The sharp increases in ultrafine particle number concentrations were frequently observed in late morning, and the particle bursts on 5 of the 12 nucleation event days can be attributed to the homogeneous nucleation leading to new particle formation. The new particle formation events were characterized with a larger number of nucleation-mode particles, larger particle surface area, and larger condensational sink than usually reported in the literature. These suggest an intense production of sulfuric acid from photo-oxidation of sulfur dioxide in the YRD. Overall, the growth rate of newly formed particles was moderate (6.4 ± 1.6 nm h?1), which was comparable to that reported in the literature.  相似文献   
8.
During the Rocky Mountain Airborne Nitrogen and Sulfur (RoMANS) study, conducted during the spring and summer of 2006, a suite of instruments located near the eastern boundary of Rocky Mountain National Park (RMNP) measured aerosol physical, chemical and optical properties. Three instruments, a differential mobility particle sizer (DMPS), an optical particle counter (OPC), and an aerodynamic particle sizer (APS), measured aerosol size distributions. Aerosols were sampled by an Interagency Monitoring of Protected Visual Environments (IMPROVE) sampler and a URG denuder/filter-pack system for compositional analysis. An Optec integrating nephelometer measured aerosol light scattering. The spring time period had lower aerosol concentrations, with an average volume concentration of 2.2 ± 2.6 μm3 cm?3 compared to 6.5 ± 3.9 μm3 cm?3 in the summer. During the spring, soil was the single largest constituent of PM2.5 mass, accounting for 32%. During the summer, organic carbon accounted for 60% of the PM2.5 mass. Sulfates and nitrates had higher fractional contributions in the spring than the summer. Variability in aerosol number and volume concentrations and in composition was greater in the spring than in the summer, reflecting differing meteorological conditions. Aerosol scattering coefficients (bsp) measured by the nephelometer compared well with those calculated from Mie theory using size distributions, composition data and modeled RH dependent water contents.  相似文献   
9.
《Chemosphere》2013,90(11):1437-1442
Trace levels of arsenic and selenium can be toxic to living organisms yet their quantitation in high ionic strength or high salinity aqueous media is difficult due to the matrix interferences which can either suppress or enhance the analyte signal. A modified thiol cotton fiber (TCF) method employing lower flow rates and centrifugation has been used to remove the analyte from complex aqueous media and minimize the matrix interferences. This method has been tested using a USGS (SGR-1b) certified reference shale. It has been used to analyze Marcellus shale samples following microwave digestion as well as spiked samples of high salinity water (HSW) and flow back wastewater (WRF6) obtained from an actual gas well drilling operation. Quantitation of arsenic and selenium is carried out by graphite furnace atomic spectroscopy (GFAAS). Extraction of arsenic and selenium from Marcellus shale exposed to HSW and WRF6 for varying lengths of time is also reported.  相似文献   
10.
Biplots combining magnetic parameters allow to identification and differentiation different pollutant emission sources. A major problem in soil pollution is the characterization of the relative contributions of different anthropogenic particles sources. This paper demonstrates the efficiency of magnetic techniques to provide identification and differentiation of contaminating emission sources. About 100 soil samples were collected across a mixed agricultural and industrial area (Crau plain/Berre-Fos basin) in southern France. Nine soil profiles were realized. They are aligned along a transect, from the Mediterranean cost to the north. Measurements of initial magnetic susceptibility (chi) and remanent magnetization (ARM, IRM) have been carried out at room temperature. Several ratios of magnetic parameters were calculated and tested. Bivariate analyses allow to characterize different pollution sources and graphic results suggest three dominant contributions originated from road traffic, airport and steel industry. Moreover, magnetic grain-size discrimination between surface-soil samples and bottom-soil samples is obtained. An increase of hard magnetic components from topsoil towards the bottom of the profiles is evidenced.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号